МОДЕЛИРОВАНИЕ ПРОЦЕССА РАЗВИТИЯ ЭЛЕКТРИЧЕСКОГО ПРОБОЯ В ВАКУУМНЫХ МАГНИТОУПРАВЛЯЕМЫХ КОНТАКТАХ

Ю.В. Черкасова, А.С. Иваников, к.т.н. 390005, Россия, г. Рязань, ул. Гагарина, 59/1 ФГБОУ ВПО «Рязанский государственный радиотехнический университет»

Рассмотрены результаты исследования механизма развития пробоя в вакуумных магнитоуправляемых контактах. Разработана компьютерная модель формирования электрического пробоя. Приведены результаты моделирования (зависимость напряженности электрического поля и тока автоэлектронной эмиссии от времени).

The paper covers results of the investigation for breakdown development mechanism in vacuum magnetically operated contacts. A computer model for the electrical breakdown forming has been developed. Simulation results (dependence of the electric field strength and field emission current on time) are presented.

Введение

Основной задачей работы является оценка роли предпробойных токов в развитии электрических пробоев при коммутации электрических цепей маломощными высоковольтными коммутаторами.

Теоретические и экспериментальные исследования механизма развития пробоя

Все теоретические расчеты и экспериментальные исследования проводились для вакуумных высоковольтных магнитоуправляемых контактов (МК) типа МКА-52142 (на современном этапе выпускается его аналог МКА-40141 с пробивным напряжением 10 кВ). Такой коммутатор используется для коммутации электрических цепей напряжений до 10 кВ при токе до 1мА. Основной особенностью работы такого прибора является наличие большого ограничительного резистора $R_{ocp} \approx 1.10^7$ Ом (10 МОм) и высокая скорость перемещения электродов (контакт-деталей).

На рис. 1 приведена типовая осциллограмма тока через контакт в момент замыкания при рабочем напряжении $U_0 = 10$ кВ, токе коммутации $I_0 = I_{\kappa} = 1$ мА и $R_{orp} = 10$ МОм.

100 · 10⁻⁶ c

Рис. 1. Осциллограмма тока через контакт при замыкании: $U_0 = 10 \text{ кB}$ и $R_{opp} = 1 \cdot 10^7 \text{ Om}$

Видно, что еще до физического контактирования в межэлектродном зазоре протекает электрический ток. При анализе было сделано предположение, что данный ток обусловлен двумя составляющими: емкостным током вследствие изменяющейся во времени динамической емкости электродов при их перемещении и автоэлектронной эмиссией с микровыступов на катоде, являющейся инициатором электрического пробоя [1].

Расчет тока автоэлектронной эмиссии проводился с использованием уравнения Фаулера-Нордгейма [3, 4, 5]:

$$j = 1,55 \cdot 10^{-6} \frac{E^2}{t^2(y)\varphi} \exp\left[-\frac{6,85 \cdot 10^9 \varphi^{3/2}}{E} \Theta(y)\right],$$
 (1)

$$\Theta(y) = 0.95 - 1.03 y^2, \tag{2}$$

$$y = 3.62 \cdot 10^{-4} E^{1/2} \varphi^{-1}, \tag{3}$$

где $t^2(y) \approx 1,1;$

Θ(у) – функция Нордгейма;

 ϕ – работа выхода электронов для вольфрама (ϕ = 4,5 эВ);

E – напряженность электрического поля ($E = \beta E_0$);

*Е*₀ – напряженность электрического поля в условиях монолитной поверхности;

β – коэффициент усиления, определяемый геометрической формой эмиттера.

Ток автоэлектронной эмиссии определяется:

$$I_{A\Im\Im} = jS, \qquad (4)$$

где *S* – площадь эмитирующего участка контактирующей поверхности. Предварительно была рассчитана напряженность электрического поля:

Рис. 2. Изменение напряженности поля: 1) $a = 1,5 \cdot 10^4 \text{ м/c}^2$, межэлектродное расстояние $d_1 = 0,2 \cdot 10^{-3} \text{ м}$; 2) $a = 1,1 \cdot 10^4 \text{ м/c}^2$, $d_2 = 0,14 \cdot 10^{-3} \text{ м}$

Значение ускорения движения контактов принималось постоянной $a = (1,1\div1,5)\cdot10^4 \text{ м/c}^2$ в пределах ошибки 10–15 % [2]. Время движения контакт-деталей электродов определялось экспериментально по времени нарастания предпробойного тока и для исходного межэлектродного расстояния $d_0 = 0,5$ мм (для геркона МКА-52142) составило 275-300 мкс.

Результаты расчета приведены на рис. 2. Напряженность электрического поля, при которой возможна автоэлектронная эмиссия, составляет $(5\div8)\cdot10^7$ В/м, и такое состояние наступает в момент времени $t = (200\div220)\cdot10^{-6}$ с, что соответствует межэлектродным расстояниям $d = (0,2\div0,14)\cdot10^{-3}$ м. Очевидно, что изменение тока до данного времени определяется емкостным током и сопровождается перераспределением заряда между паразитной C_1 и динамической C_2 емкостями при неизменном напряжении на электродах [1].

Данные утверждения подтверждаются расчетом заряда, переданного динамической емкости, проведенного на основе анализа осциллограммы предпробойного тока, изменение которого во времени определяется зависимостью вида $I = kt^2$ при $k = 0,25 \cdot 10^5 \text{ A/c}^2$ в диапазоне времени $t = (0.200) \cdot 10^{-6}$ с.

Убыль заряда C_I сопровождается дозарядом этой же емкости, и до величины тока $I \le I_0$ = 1 мА возможно динамическое равновесие: ток через контакты равен току дозаряда, и напряжение на приборе остается постоянным. При токе $I \ge I_0$, внешний источник отключается, и все процессы будут определяться значением паразитной емкости, играющей роль дополнительного источника напряжения.

На рис. 3, 4 и 5 приведен общий вид поверхности контактного покрытия, полученный с помощью атомно-силового микроскопа для трех видов: плазменного напыления с последующей приштамповкой, осаждения из дугового разряда и осаждения из дугового разряда, но для современного аналога. Материал покрытия – вольфрам (W), нанесен различными методами, используемыми при производстве вакуумных высоковольтных MK: кристаллизованное осаждение из газовой фазы WF₂ и осаждение с помощью дугового разряда в парах W-катода. Полученные результаты позволили оценить площадь эмиттера $S = \pi r^2$ и коэффициент усиления β . Для таких покрытий наиболее вероятная форма эмиттера либо в форме эллипсоида, либо в виде конуса с закругленной вершиной.

В этом случае $\beta = \frac{ah}{r} + 1$, $a \approx 1$, r – радиус закругления вершины [3].

Рис. 3. Плазменное напыление с приштамповкой

Рис. 4. Осаждение из дугового разряда

Рис. 5. Осаждение из дугового разряда

Рис. 6. Расчетная зависимость тока автоэлектронной эмиссии $I_{A \ni 3}$, *мА* для различных β и *r*:1) $\beta = 10$, $r = 0,5 \cdot 10^{-6}$ м; 2) $\beta = 2$, $r = 0,5 \cdot 10^{-6}$ м; 3) $\beta = 2$, $r = 2 \cdot 10^{-6}$ м

При этом β изменяется от 2 (для газофазного и дугового осаждения) до 10 (для плазменного метода), r -от 0,5 $\cdot 10^{-6}$ м до 2 $\cdot 10^{-6}$ м, соответственно. Автоэлектронный ток рассчитывается в диапазоне времени 200÷300 мкс, то есть от момента появления до момента контактирования для 2-х крайних значений $\beta = 2$ и $\beta = 10$ и $r = (0,5\div 2)\cdot 10^{-6}$ м. Расчет проведен численными методами с шагом по времени 10 мкс. Результаты приведены на рис. 6.

Следует отметить, что даже в случае $\beta = 10$ и r = 0,5 мкм (практически в момент контактирования), плотность тока равна

$$j = \frac{I}{S} = \frac{100 \cdot 10^{-3}}{\pi r^2} = \frac{100 \cdot 10^{-3}}{3,14 \cdot 0,25 \cdot 10^{-12}} = 1,3 \cdot 10^{11} A / m^2 = 1,3 \cdot 10^7 A / cm^2,$$
(6)

что меньше практического значения $j = 5 \cdot 10^7$ A/cm² [3], ведущего к плавлению эмитирующего выступа. Результаты расчета показали, что критическая плотность тока, приводящая к разогреву острия – микровыступа на катоде $j \ge 5 \cdot 10^7$ A/cm² достигает в момент времени, когда межэлектродный зазор достигает значений 7÷8 мкм, и за оставшееся время эмиттер не успевает не только взорваться, но и разогреться. Поэтому основным механизмом является автоэлектронная эмиссия.

Это предположение подтверждается тем, что возможная критическая плотность тока достигается при межэлектродных расстояниях (5÷7)·10⁻⁶ м, т.е. практически в момент физического контактирования при очень высоких скоростях перемещения. При этом, эмитирующий выступ принятой формы не успевает разогреться, да и величина напряжения и, соответственно, напряженность электрического поля меньше рассчитанной.

Экспериментальная проверка гипотезы об анодном механизме развития электрического пробоя (локальный разогрев поверхности анода узким пучком автоэлектронов до плавления) в системах с подвижными электродами, в частности в вакуумных МК, представляет значительную трудность. При физическом контактировании разрушается сам эмитирующий выступ, а расплавленная от воздействия автоэлектронной эмиссии микрозона на аноде накладывается на холодный катод с переносом материала контактного покрытия в жидкой фазе. Поэтому характерный для анодного механизма эрозионный след в виде кратера на аноде при единичном контактировании практически не просматривается, и о роли того или иного механизма приходится судить по косвенным результатам, например, по изменению времени появления тока в момент замыкания, от значения емкости и напряжения.

Результаты компьютерного моделирования

В настоящей работе на основе физических процессов, характерных для высоковольтных магнитоуправляемых контактов, была сделана попытка создания компьютерной модели механизма развития электрического пробоя, которая бы существенно расширила оценки влияния различных факторов: скорости перемещения электродов, состояния поверхности электродов, геометрических размеров, значений динамической и паразитных емкостей – на процесс развития разряда.

В основу модели положен физический механизм, использованный выше при анализе формирования электрического пробоя: автоэлектронная эмиссия с бомбардировкой узким по сечению электронным лучом анода с последующим разогревом микроучастка поверхности до температуры плавления и развитие электрического пробоя в парах материала анода. Программа была написана в среде быстрой разработки, в которой в качестве языка программирования используется язык Delphi. Пример рабочего окна расчета зависимости напряженности и силы тока от времени для различных параметров геркона приведен на рис. 7.

Рис. 7. Рабочее окно расчета зависимостей напряженности и силы тока от времени

В результате моделирования для начальной стадии развития пробоя определены динамика распределения напряженности электрического поля и зависимость тока автоэлектронной эмиссии от времени. На рис. 8 показано изменение напряженности электрического поля от времени при различных значениях ускорения контактов.

Рис. 8. Зависимость напряженности от времени для различного ускорения движения контактов:

1) $a = 1,3 \cdot 10^4 \text{ m/c}^2$; 2) $a = 1,5 \cdot 10^4 \text{ m/c}^2$; 3) $a = 1,6 \cdot 10^4 \text{ m/c}^2$

Для данного характера изменения напряженности электрического поля были просчитаны автоэлектронные токи, предшествующие замыканию контактов при различных коэффициентах усиления поля, и значения высоты и радиуса закругления микровыступов, полученные из результатов исследований на атомно-силовом микроскопе. Зависимость автоэлектронного тока от времени приведена на рис. 9.

Заключение

Сравнение результатов моделирования и экспериментальных расчетов показало, что они имеют по порядку значений хорошее соответствие. Это свидетельствует о том, что данная компьютерная модель может служить основой проведения комплекса теоретических исследований физических процессов в системах с подвижными электродами и анализа факторов, определяющих их протекание.

Литература

- 1. Латам Р. Вакуумная изоляция установок высокого напряжения. Перев. с англ. Под ред. Г.С. Белкина. М.: Энергоатомиздат., 1985.–192 с.
- 2. Ушаков И.А., Зуб В.Н. Герконы (принцип действия, конструкция, расчет): учеб. пособие / Под ред. И.А. Ушакова; РРТИ. Рязань, 1977. 76 с.
- 3. Рабкин Л.Н., Евгенова И.Н. Магнитоуправляемые герметизированные контакты: конструкции, свойства, применение. М.: Связь, 1976. 104 с.
- 4. Месяц Г.А. Импульсная энергетика и электроника. М.: Наука, 2004. 704 с.
- 5. Шуппе Г.Н. Вопросы электронных и ионных эмиссий (виды эмиссий): учеб. пособие / РГРТА. – Рязань, 2006. – 84 с.